89 research outputs found

    The Social, Anti-Social Network: A Qualitative Study on Pro Social Benefits of Online Multiplayer Gaming

    Get PDF
    Using the social capital and uses and gratifications perspectives, this study employs a qualitative, interview-based approach to studying the pro-social benefits of online multiplayer gaming.Through in-depth interviews, this study contributes to the literature of pro-social benefits of online multiplayer gaming by corroborating past research with evidence that online multiplayer gaming fosters the generation of social capital, both bridging and bonding, and cultural capital. Further, online gaming offers players a sense of community, provides them the tools to form and work together in coordinated teams, and allows them to feel a sense of mastery, excitement, and accomplishment with each in-game victory

    Sonar-induced pressure fields in a post-mortem common dolphin

    Get PDF
    Author Posting. © Acoustical Society of America, 2012. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 131 (2012): 1595-1604, doi:10.1121/1.3675005.Potential physical effects of sonar transmissions on marine mammals were investigated by measuring pressure fields induced in a 119-kg, 211-cm-long, young adult male common dolphin (Delphinus delphis) cadaver. The specimen was instrumented with tourmaline acoustic pressure gauges used as receiving sensors. Gauge implantation near critical tissues was guided by intraoperative, high-resolution, computerized tomography (CT) scanning. Instrumented structures included the melon, nares, ear, thoracic wall, lungs, epaxial muscle, and lower abdomen. The specimen was suspended from a frame equipped with a standard 50.8-mm-diameter spherical transducer used as the acoustic source and additional receiving sensors to monitor the transmitted and external, scattered field. Following immersion, the transducer transmitted pulsed sinusoidal signals at 5, 7, and 10 kHz. Quantitative internal pressure fields are reported for all cases except those in which the gauge failed or no received signal was detected. A full necropsy was performed immediately after the experiment to examine instrumented areas and all major organs. No lesions attributable to acoustic transmissions were found, consistent with the low source level and source-receiver distances.Work supported by NOPP through ONR Grant No. N000140710992. Work at CSI additionally supported by ONR Grant No. N000140811231

    Comprehensive splice-site analysis using comparative genomics

    Get PDF
    We have collected over half a million splice sites from five species—Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans and Arabidopsis thaliana—and classified them into four subtypes: U2-type GT–AG and GC–AG and U12-type GT–AG and AT–AC. We have also found new examples of rare splice-site categories, such as U12-type introns without canonical borders, and U2-dependent AT–AC introns. The splice-site sequences and several tools to explore them are available on a public website (SpliceRack). For the U12-type introns, we find several features conserved across species, as well as a clustering of these introns on genes. Using the information content of the splice-site motifs, and the phylogenetic distance between them, we identify: (i) a higher degree of conservation in the exonic portion of the U2-type splice sites in more complex organisms; (ii) conservation of exonic nucleotides for U12-type splice sites; (iii) divergent evolution of C.elegans 3′ splice sites (3′ss) and (iv) distinct evolutionary histories of 5′ and 3′ss. Our study proves that the identification of broad patterns in naturally-occurring splice sites, through the analysis of genomic datasets, provides mechanistic and evolutionary insights into pre-mRNA splicing

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm

    Beyond the black box: Promoting mathematical collaborations for elucidating interactions in soil ecology

    Get PDF
    © 2019 The Authors. Understanding soil systems is critical because they form the structural and nutritional foundation for plants and thus every terrestrial habitat and agricultural system. In this paper, we encourage increased use of mathematical models to drive forward understanding of interactions in soil ecological systems. We discuss several distinctive features of soil ecosystems and empirical studies of them. We explore some perceptions that have previously deterred more extensive use of models in soil ecology and some advances that have already been made using models to elucidate soil ecological interactions. We provide examples where mathematical models have been used to test the plausibility of hypothesized mechanisms, to explore systems where experimental manipulations are currently impossible, or to determine the most important variables to measure in experimental and natural systems. To aid in the development of theory in this field, we present a table describing major soil ecology topics, the theory previously used, and providing key terms for theoretical approaches that could potentially address them. We then provide examples from the table that may either contribute to important incremental developments in soil science or potentially revolutionize our understanding of plant-soil systems. We challenge scientists and mathematicians to push theoretical explorations in soil systems further and highlight three major areas for the development of mathematical models in soil ecology: Theory spanning scales and ecological hierarchies, processes, and evolution

    Beyond the black box: promoting mathematical collaborations for elucidating interactions in soil ecology

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Understanding soil systems is critical because they form the structural and nutritional foundation for plants and thus every terrestrial habitat and agricultural system. In this paper, we encourage increased use of mathematical models to drive forward understanding of interactions in soil ecological systems. We discuss several distinctive features of soil ecosystems and empirical studies of them. We explore some perceptions that have previously deterred more extensive use of models in soil ecology and some advances that have already been made using models to elucidate soil ecological interactions. We provide examples where mathematical models have been used to test the plausibility of hypothesized mechanisms, to explore systems where experimental manipulations are currently impossible, or to determine the most important variables to measure in experimental and natural systems. To aid in the development of theory in this field, we present a table describing major soil ecology topics, the theory previously used, and providing key terms for theoretical approaches that could potentially address them. We then provide examples from the table that may either contribute to important incremental developments in soil science or potentially revolutionize our understanding of plant–soil systems. We challenge scientists and mathematicians to push theoretical explorations in soil systems further and highlight three major areas for the development of mathematical models in soil ecology: theory spanning scales and ecological hierarchies, processes, and evolution

    Study of B+- --> D_CP K+- and D^*_CP K+- decays

    Full text link
    We report a study of the modes D_CP K+- and D^*_CP K+- where D^(*) decays to CP eigenstates. The data sample used contains 275 x 10^6 BB events at the Upsilon(4S) resonance collected by the Belle detector at the KEKB energy-asymmetric e^+ e^- collider. The CP asymmetries obtained for D_CP K are: A_1 = 0.06 +- 0.14 (stat) +- 0.05 (sys), A_2 = -0.12 +- 0.14 (stat) +- 0.05 (sys) and for D^*_CP K : A_1^* = -0.20 +- 0.22 (stat) +- 0.04 (sys), A_2^* = 0.13 +- 0.30 (stat) +- 0.08 (sys).Comment: 10 pages, 7 figures, submitted to Phys.Rev.D (Rapid Communications

    BK Channels Regulate Spontaneous Action Potential Rhythmicity in the Suprachiasmatic Nucleus

    Get PDF
    Background: Circadian (,24 hr) rhythms are generated by the central pacemaker localized to the suprachiasmatic nucleus (SCN) of the hypothalamus. Although the basis for intrinsic rhythmicity is generally understood to rely on transcription factors encoded by ‘‘clock genes’’, less is known about the daily regulation of SCN neuronal activity patterns that communicate a circadian time signal to downstream behaviors and physiological systems. Action potentials in the SCN are necessary for the circadian timing of behavior, and individual SCN neurons modulate their spontaneous firing rate (SFR) over the daily cycle, suggesting that the circadian patterning of neuronal activity is necessary for normal behavioral rhythm expression. The BK K + channel plays an important role in suppressing spontaneous firing at night in SCN neurons. Deletion of the Kcnma1 gene, encoding the BK channel, causes degradation of circadian behavioral and physiological rhythms. Methodology/Principal Findings: To test the hypothesis that loss of robust behavioral rhythmicity in Kcnma1 2/2 mice is due to the disruption of SFR rhythms in the SCN, we used multi-electrode arrays to record extracellular action potentials from acute wild-type (WT) and Kcnma1 2/2 slices. Patterns of activity in the SCN were tracked simultaneously for up to 3 days, and the phase, period, and synchronization of SFR rhythms were examined. Loss of BK channels increased arrhythmicity but also altered the amplitude and period of rhythmic activity. Unexpectedly, Kcnma1 2/2 SCNs showed increased variability in the timing of the daily SFR peak

    Evidence for Direct CP Violation in B0 -> K+- pi-+ Decays

    Full text link
    We report evidence for direct CP violation in the decay B0 -> K+-pi-+ with 253/fb of data collected with the Belle detector at the KEKB e+e- collider. Using 275 million B B_bar pairs we observe a B -> K+-pi-+ signal with 2140+-53 events. The measured CP violating asymmetry is Acp(K+-pi-+) = -0.101+-0.025 (stat)+-0.005 (syst), corresponding to a significance of 3.9 sigma including systematics. We also search for CP violation in the decays B+- -> K+-pi0 and B+- -> pi+-pi0. The measured CP violating asymmetries are Acp(K+-pi0) = 0.04+-0.05(stat)+-0.02(syst) and Acp(pi+-pi0) = -0.02+-0.10(stat)+-0.01(syst), corresponding to the intervals -0.05 < Acp(K+-pi0) < 0.13 and -0.18<Acp(pi+-pi0)<0.14 at 90% confidence level.Comment: 9 pages, 3 figures. submitted to Physical Review Letter

    Caregiver perceptions of children who have complex communication needs following a home-based intervention using augmentative and alternative communication in rural Kenya: an intervention note:Home-based intervention using AAC in rural Kenya

    Get PDF
    A high level of unmet communication need exists amongst children with developmental disabilities in sub-Saharan Africa. This study investigated preliminary evidence of the impact associated with a home-based, caregiver-implemented intervention employing AAC methods, with nine children in rural Kenya who have complex communication needs. The intervention used mainly locally-sourced low-tech materials, and was designed to make use of the child's strengths and the caregiver's natural expertise. A pretest-posttest design was used in the study. Data were gathered using an adapted version of the Communication Profile, which was based on the International Classification of Functioning, Disability, and Health (ICF) framework. The non-parametric Wilcoxon signed-rank test was applied to data from the first two sections of the Communication Profile-Adapted. Qualitative analysis was conducted on the final section. The data provided evidence of statistically significant positive changes in caregiver perceptions of communication at the levels of Body Structure and Function, and Activities for Communication. Also, analysis of the Participation for Communication section revealed some expansion to the children's social activities. The potential impact of the home-based intervention would benefit from investigation on a larger scale. Limitations of the study are discussed
    corecore